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PREDICTED GAS PROPERTIES IN THE SHOCK LAYER AHEAD OF
CAPSULE-TYPE VEHICLES AT ANGLES OF ATTACK

By George E. Kaattari

SUMMARY

A method for determining shock-wave shapes, stagnation-point location,
and flow-field properties for spherically blunt bodies at angle of attack
was developed. The method is applicable to perfect gas flows and equilib-
rium flow of real gases. The results given by the method for shock surface
and stagnation-point location are compared with experimental values.
Comparison of the shock-layer density and temperature distribution are
also made between the results of the method and those of a more exact
procedure for a sphere. These comparisons indicate satisfactory agreement .

INTRODUCTION

During atmosphere entry, a vehicle is exposed to aerodynamic pressures
and temperatures which are related to the strength and orientation of the
detached shock about the forward portion of the vehicle. Present methods
for predicting such shocks and the associated pressure, density, and
temperature field (e.g., refs. 1 to 3) are generally limited to axi-
symmetric flow. Little attention has been given to the case of blunt
bodies at angle of attack.

The purpose of this paper is to present a method for determining
shock-wave shapes, stagnation-point location, and flow-field properties
for blunt bodies at angle of attack. The method is an extension of
reference 4 which treated shock-wave traces in the plane of symmetry.
The present paper repeats these results with minor modifications and, in
addition, considers shock traces in planes other than the plane of symmetry.
The method presented is applicable to perfect gas flows and equilibrium
flow of real gases. The first conditlon can occur at low Mach number
(M<7) in air and the latter condition is approached at high Mach numbers
when the reccmbination rate behind the shoeck is sufficiently rapid that
equilibrium flow is attained in a distance that is small with respect to
the shock-layer thickness.
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NOTATION
angle between streamline on body and the geodesic drawn between
a specified sonic point and the stagnaticn point, deg
shock correlation function of reference b

distance from upper sonic point to stagnation point in plane
normal to vehicle axis, ft

free-stream Mach number

pressure, lb/ft
Aoy V/ oo V%)
a(s/s*)

normalized mass-flow gradient,

radius, ft

radial coordinate with respect to vehicle axis of symmetry, ft

distance along body surface, ft

temperature, “R

stream velocity, ft/sec

Cartesian coordinates

angle of attack, deg

angle between streamline and the ¢ plane at the shock wave, deg

specific heat ratio

streamwise shock stand-off distance from point on body, ft

shock standoff distance on X-axis, ft

half-angle subtended by capsule forebody arc, deg

angle between the X-axis and the line drawn from the center of
the forebody arc to the intersection of the forebody arc with
the X-axis, deg

angle between the line drawn from the stagnation point to center
of forebody arc and the X-axis, deg

slope with respect to free-stream direction, deg

density, slugs/ft3



¢ angle between the plane containing the sonic point and the vehicle
axis and the vertical plane of symmetry, deg

e angular coordinate centered on X-axis with respect to vertical
plane of symmetry, deg

! angle in plane normal to vehicle axis of symmetry measured between
vertical plane and line containing a specified sonic point and
the stagnation point on the vehicle face, deg

Subscripts
1 conditions just upstream of shock
2 conditions Jjust downstream of shock
b body surface
S shock wave
st stagnation point

Superscripts
B B plane
1 1ower (o = 180°)
u upper (o = 0°)
* sonic point on body

ANALYSIS

Tn this section a method will be presented for defining the shock
layer and gas-flow properties in front of a blunt vehicle at angle of
attack such as shown in figure 1. The method is restricted to that
portion of the shock layer in which the flow on the body surface is
subsonic and to the angle-of-attack range O<a<e (fig. 2).

First the essential procedures of reference 4 for determining the
shock trace in the vertical plane of symmetry are reviewed. The analysis
is then extended to determine shock traces in other planes and thus to
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define the shock surface. Methods for determining the gas properties
immediately behind the shock surface, on the body surface, and within the
shock layer between the shock and body surface follow in order.

Shoeck Surface

The shock surface will be defined as a system of circular-arc
elements tangent to the Y-Z plane at the origin of the coordinate system
X-Y-Z as shown in figure 2. The radius of these circular elements and
the location of the body may be determined through application of con-
tinuity of mass flow between shock wave and body surface, oblique- and
normal -shock-wave relationships, and the unique correlation between
stagnation-point velocity gradient with Mach number for different bodies
(ref. 5). 1In reference L particular application of the foregoing was
nade to develop a method for determining shock traces in the vertical
plane of symmetry of blunt capsule vehicles at angle of attack. Essential
equations and charts for this purpose are first reviewed and refined
herein. Next, additional equations for the purpose of defining shock
traces in other planes are developed, thus allowing the shock surface to
be specified.

Shock trace in vertical plane of symmetry.- The shock-wave trace is
composed of circular arc elements whose radii depend on the inclination
and location of the sonic points on the body. The sonic-point inelination
angles are functions of angle of attack « and the angle

¢ = sin"(ry/Ry) (1)

The upper scnic point is usually located on the corner of the body and
its inclination is

*11

)
The lower sonic-point inclination ng is given by a limiting angle
ngin’ orresponding to that for a sphere as determined from reference 1,
if the lower corner inclination

= 90° - (e - a) (2a)

9& = 90° - (e + a) (2b)

is less than ngin- Ir 6% is greater than eﬁmin, the lower sonic

point is at the lower corner and thus ng = 9% and 1s given by

equation (2b). The values of egu and 6f! together with the appropriate

nermal shock-density ratic for the flight conditions involved prescribe

the values of (&%/Rg)%, 6%Y%, and (Q#/RS)Z, 931. These values, obtained

from the charts of figure 3, and the value of € from equation (1) are

used to calculate the vehicle sonic-point coordinates and shock radii, thus
1Figure 3 is a cross plot of figure 4 in reference & with appropriate

changes in nomenclature.




locating the vehicle with respect to the shock trace. The necessary
equations are %1

cos ©
(cos 9§u+cos Géz) - (sin egu—sin ng) S

e (5 /Rg) L + (1-sin 65) ¢ (3)
Ry cos Qéu N cos Géz
(5 /Re)Y 4 (1-sin 65)  (8%/Re)! + (1-sin 65) ¢

Y*u B X*u [ coSs e:u J

- L4
Rb Ro L(a*/Rg)™ + (1-sin 65)Y (%)

u *U

R Y /R
Bs b (5)

r .
b sin € cos 5"

and
*U *1 *U
cos 6y + cos 6p° - (Y /Ry,)

sin € cos ng

In the above equations and in figure 3, changes from the nomenclature of
reference L have been mede and the shock and sonic-point inclinations are
defined by the complementary angles of those previously used. The use of
egmi is a refinement to the procedure of reference 4 wherein Ggmin of
approximately 450 was used at all shock-density ratios. Two additiocnal
geometric properties associated with the shock trace in the vertical plane
of symmetry are the shock standoff distance A, and the location of

the stagnation point shown in sketch (a). Calculation of these
quantities is based on the simple

assumpt%ons.that the gtagnation Y Stagnation
streamline is perpendicular both to streamline

the normal portion of the shock

(Y-axis at the origin) and to the

body surface and that the curvature

of the stream between the shock and —
the stagnation point is constant.

For the standoff distance these
considerations give

Ny XY

=20 = 4 _ a) -

R T +cos (€ - a) - cos e (7)
where

en = sin™? (Xif - sin (e - q)J (8) Sketch (a)



and for the stagnation-point location from the axis of symetry

rst _ sin (o - egy) (9)
v sin €
where
€gt = sin”t [(l - éﬁl) sin GOJ (10)
2Rp

The distance along the body from the stagnation point to the upper and
lovwer sonic points is

S*U_ - € - a + €St (lla)
r'p 57.3 sin €

and
%1

¥l 0% - 6" - gy
™ 57.3 sin e

(11b)

Shock traces in other planes.- The analysis for shock traces other
than in the plane of symmetry generally follows that for the plane of
symnetry. Sketch (b) shows a ¢® plane containing the X-axis and rotated

¢ degrees with respect to the plane
Line of maximum X-Y. The shock trace in this plane is
slope on shock curved and tangent at the origin to
sur face the Y-Z plane. To define the shock
- trace in question, it is first neces-
¢ Piane =& sary to determine the sonic point
\ Z standoff distance. For this purpose
J¢] it is convenient to define the angle
® Dbetween tne plane containing the
lingES//’ sonic point and the vehicle axis and
Y-Z Plane the vertical plane of symmetry. The

relationship between & and ¢ is

e .
y .1 P\O“ )’ X o = tan‘l = sin ¢ (12)
* Y
E%,l‘ Z— - (1-cos 9¢) cos a
77 o
€.
Rsﬂ The analysis of shock traces in
g the ¢ plane, unlike that for the
vertical plane of symmetry, must
B Plane generally account for deviations from
radial flow. The direction of the
Sketch (b) maximum slope of the shock surface is

represented by a curved line as



indicated in sketch (b). The flow directions immedlately behind the
shock follow this curved path and have the direction f with respect to
the plane containing the sonic point and the X-axis. The sonic-point
inclination on the body in the plane tangent to the departing flow and
parallel to the X-axis (P plane) is assumed, as In reference L, to
determine uniquely the ratio of the sonic point standoff distance ftc the
shock radius. The circular arc of this radius coincides tangentially
with the Y-Z plane since it represents the projection on the £ plane
of a curved shock element proceeding from the origin.

The analysis is now reduced to a derivation of sonic pcint stand-
off distance from geometric considerations. Independent expressions for

the X distance from the Y-Z plane to the sonic point, Rg(l—sin 9§B)+-Af
and ¥ + ry,(1-cos ¢) sin @, are equated and divided by the identity

Rg cos 6%F = ryy sin ¢ cos B/sin @, resulting in

(1-sin 6%) + &/Rg _ [X"Y/rp + (L-cos @) sin a] sin © (13)
= 3

* .
cos O sin ® cos @

Note that superscript B has been dropped and is to be understood in
the following discussion. The left-hand term of equation (13) is a
function of the shock-density ratio and an undetermined sonic-point
inclination angle 9%. The angles B and 9% are also related by the
equation

sin € sin ¢ cos B
sin @

. . . 1
cos{%in"l [51n € §in Osin B | 4in o sin (QFB)JM
sin ¢ J

- sin e, cos (¢-B)

(14)

COSQ—;;=

Since the left-hand terms of equations (13) and (14) are both functions
of 6F, the right-hand terms may be related. Figure 4 shows this rela-
tionship with shock-density ratio as the solid-line paraneter. (The
dashed line identified by the parameter g¥* will be discussed in later
sections.) The use of this chart is as follows: Coordinates for a curve
with the abscissa calculated from equation (1L) and the ordinate from
equation (13) are found for three different choices of f. These
coordinates are plotted in figure }t. The intersection of the curve
defined by these coordinates with the appropriate shock-density ratio
paramneter lccates cos 8% and, therefore, 9%. With the wvalue of 9; P
known, A*/RS and 9: can then be found from figure 3. The value of A&F
of the shock-layer thickness at the sonic point located in the ¢ plane
is

x (X)) + (1-cos 9) sin «
= = > (15)

T
b 1 - sin 6§

+ 1
A*?RS




A circular arc passing through this point and tangent to the Y-Z plane at
the origin is then assumed to define the shock trace. This assumpticn
implies that the distortion of the arc shape by projection from the ¢
plane to the [ plane may be neglected.

It should be noted that for a portion of the lower part of the shock
the flow is purely radial. The condition oceurs at the o plane in which
the solution for cos & coincides on the curve (Qﬁmin). Between this
plane and ¢ = 1807, the angle £ = 0° and the shock radius has the

constant value Ré given by equation (6).
Gas Properties at Shock Surface

The gas properties at the shock surface can be calculated if the
free-stream properties are specified and the shock geometry is defined.
To this end, each point on the shock surface is considered an element of
a plane shock inclined at some angle with respect to the free-stream
directions. This angle 1s that of the maximum inclination of the shock
surface at the point in question. The shock-inclination angle Gé
opposite the sonic point in the {3 plane is determined as outlined in the
previous section. The shock inclination along the circular shock arce from
this point may be considered to inerease linearly with arc length from
Qé to 90° at the origin. The flow properties behind the obligue shock
are then determined with the equations of reference 6 for perfect gases or
with the charts of references 7 and 8 for air in equilibrium flow or with
similar charts that become available for other real gases.

In many cases the gas behind the shock will not be in equilibrium.
A quantitative method leading to the estimation of the shock properties
under these circumstances requires information on reaction rates of gases
over a wider range of Mach numbers and densities than is currently
available.

Gas Properties at Vehicle Surface

The analysis to be undertaken involves an infinitesimally thin
streamtube on the vehicle surface. The flow process in the tube is
considered an isentropic expansion from the previously calculated
stagnation-point conditions. The pressure and other thermodynamic prop-
erties of the gas within the streamtube are calculated by an application
of mass-flow continuity and isentropic flow relationships. Centrifugal
effects are neglected and thus "one-dimensional" flow relationships are
utilized.

The first step in the analysis is to determine the mass~flow pbvb
variation in a streamtube lying on the body surface. The surface is



considered divided into a series of

streamlines radiating from the stag- st
nation point. Two streamlines repre-

senting the projection of a streamtube

on the vehicle surface are depicted in S

sketeh (¢). The width of the stream- ok
tube is assumed to increase linearly — + x
with distance from the stagnation point l /

as if the flow were radial. Accord-
ingly, the equation for continuity of
radial mass flow given in reference 4 !
is utilized to evaluate the body sur-
face mass flow pbvg' variation in the
streamtube. This eguation
Sketch (c)

AN cos Bg (162)

Py N <?bvb\ )
—= - 1] s8in B4 cos B4 + | sin 6
\\pl / S S prl/ b

is rearranged to give

Po¥p PV cos 6 [ 1 (Eé 1) ein ss] (16b)
(ag7)* ()" sin gy La/rg WP /

1
The equation of shock-layer thickness

A —-AO R'b . .
ol + e (1 - sin Qb) - (1 - sin 6g) (17)

and the relationship Ry cos &, = Ry cos 85 are combined and rearranged
to give shock thickness A at 6 (or 6g) as a function of sonic-point
shock-layer thickness &% and sonic—point inclinations 9% and 6::

*

A ¥ cos 9s * x .
—_—= — - ———= (5in - gin - (sin 6% - sin 6.) 18
Rs  Rs cos 6f ( % %) ( S S (15)

Equations (16b) and (18) can be combined to solve for the body mass-flow
term vab/(Qbe)* as a function of &, or 6g. With the additional
relationship s = Ry(w/2 - 6,), with 6, measured in radians, for spherical

surfaces or s = Rg cos Og for a disc, it can be shown that equation (161)
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expands into an odd power series in s, the distance along the body
surface

prb/(prb)* = cy(s/s*) + cs(s/s*)3 + ...

Two terms of this series give a simple and close approximation to

equation (16b). The constants cj and cg are evaluated under the follow-
ing conditions: (1) When s = 0, V.. = 0 is automatically satisfied;
(2) at s = s*, d[prb/(prb)*] /d(s/s*) = q* is determined from the
differentiation of (16b); and (3) at s = s*, prb/(prb)* = 1. A fourth

condition applies when the flow passes through sonic values before reach-
ing a corner: (4) +then at s = s*, g*¥ = 0. A function relating
pbvb to s consistent with the above enumerated boundary conditions is

S O O] o2

The final step in the analysis is to determine pressure as a function
of length (s) along the streamtube. Since equation (19) gives the rela-
ticnship between mass-~flow ratic and distance along the body surface, the
required pressure function can be found through mass-flow pressure rela-
tionships. For an ideal gas with constant 7 the relationship is

1 —~ 1
( EEZ:)* - @ly—lﬁ Jt- <§§£>]T (%;)1/ (20)

The values of pressure ratioc as a function of s/s* are found by combining
equations (19) and (20) for various values of the index gq*. The results
are presented in figure 5. Corresponding temperature and density functions
may be calculated with the relationships

y-1
i-(i 5
Tst Pst

and

X

Lo <}EL_ 7

Pst  \Pst
For real gas in equilibrium flow, equation (19) is valid but the dependence
between pressure and mass flow will generally require a step-by-step
calculation. The index q* is incorporated in the chart of figure U4 so
that the appropriate pressure distribution along the streamline from the
stagnation point to the soniec point is indicated simultaneously with the
solution for eg. The pressure distribution may be assumed to lie on a

straight line proJjected from the Y-Z plane on to the vehicle surface and
extending from the stagnation point to the sonic point although the actual
stream deviates from this projection as indicated in sketch (d). This
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assumption introduces little error
since the variation in pressure is |
relatively insensitive to small changes
in path length. When the ¢ plane 1is
on the vertical plane of symmegry

o = 0°), the angle 6f 1is 6p"
fig. 2), and the required g* is st
located on figure 4 at the abscissa *

cos 6% intersection with the - + _
appropriate density ratio pz/pl.

The actual path of a streamline
on the vehicle surface can be deter-
mined approximately on the basis of [
an analysis presented in appendix B.

Sketch (d)

Temperature and Density Distribution in Shock Layer

The temperature and density in the shock layer are assumed to vary
linearly from the shock to the vehicle surface. Since the value of temper-
ature and density behind the shock and on the vehicle surface can be cal-
culated as outlined in the previous sections, these properties within the
shock layer are quickly determined. The results based on this simple
structure are in fair accord with a more sophisticated theory for ideal
gases as will be shown.

COMPARISONS OF ANALYTICAL AND EXPERIMENTAL RESULTS

The accuracy of the present method for predicting shock positions and
gas properties in the shock layer 1is assessed by comparisons with the
available results of experiment and with other theories. These compari-
sons are limited since no large body of experimental results exists,
particularly in the range of high shock-density ratio where real gas
effects occur.

This section of the report first compares the predicted and experi-
mental shock envelope traces of a capsule vehicle in air at a Mach number
of about 5.5 (pz/pl = 5.15). Second, the results of the method in pre-
dicting temperature and density distribution in the shock layer of a
sphere will be compared with the results of an exact theoretical method
for a perfect gas. Third, a comparison of the predicted pressure distri-
pution with Newtonian theory will be made for a capsule vehicle at
different angles of attack. Finally, predicted stream patterns and
stagnation-point locations on the forward face of a capsule vehicle at
various angles of attack will be compared with experimental results.



Figure © shows experimental and predicted shock traces in various
planes through a capsule vehicle for a shock-density ratio of about %.15
and at various angles of attack. Good agreement is indicated between the

experimental and predicted shock traces.

Figure 7 shows the estimated temperature and density variation in
tne forward shock layer about a sphere at two shock-density ratics for
perfect gases. These values agree generally within 3 percent of those of
the more exact results calculated with the methods of reference 2. At
By = 50° the shock layer is at the boundary of the region to which the
present method 1s restricted and agreement begins to deteriorate.

Figure 8 shows comparisons of the results of the method with Newtonian
values for pressure distribution on a capsule vehicle at angle of attack.
Newtonian theory is known to overestimate the pressure at "sonic corners."
This is to be expected since Newtonian theory cannot anticipate and account
for an expansion around a corner.

Figure 9 shows predicted and experimental stream patteris and
stagnation-point locations. The results are for a Mach number of 3.3
(pz/pl = 4.11) and angles of attack to 30°. The superposed solid lines on
the photograph are predicted streamlines and are seen to be in fair accord
with experiment, particularly at o = 20°. Good agreement between experi-
mental and predicted stagnation-point locations is also indicated.

CONCLUDING REMARKS

A simple method of predicting shock envelopes about spherically blunt
atmosphere entry vehicles at angle of attack was extended to include
predictions of gas properties in the shock layer and on the forward surface
of such vehicles. The method is applicable to perfect gas flows and to
equilibrium flows of real gases. The results are presented in the form of
charts for ease of computaticn.

Satisfactory agreement between predicted and experimental shock
envelopes, vehicle surface streamlines, and stagnation-point locations
was found for capsule vehiecles in the Mach number range 3 toc 6. Cood
agreement between the results of the present method and that of a more
exact procedure for temperature and density variation in the shock layer
of a sphere was found for two shock-density ratios.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 18, 1962



13

APPENDIX A
NUMERICAL EXAMPLES

The method is now applied to the prediction of the shock trace, the
pressure on the body, and the temperature and density distribution of the
shock layer in the ¢ plane containing the X-axis and the sonic point on
the body at ¢ = A0°. The vehicle has a face of ratio rb/Rb = 0.5 sub-
tending the angle e = 30° (eq. (1)). The angle of attack is « = 25% and
the Mach number is 5.

Tt is first necessary to evaluate equations (2) and (11) to establish
the shock standoff distance and stagnaticn-point location which are
common to shock traces in all planes. At Mach number 5, the normal shock-
density ratio in ideal air is 5. The value of Q%min at this density
ratio is determined from figure 3 as 49.29. Equation (2) gives the upper
sonic point inclination @&p% = 90° - (e-a) = 85° and the lower corner
inclination 9% = 900 - (e+x) = 35°. Since the latter angle is less than
ngin = Lk9.2°, the lower sonic point does not lie on the corner, but on
the capsule face where 9%2 = 49,29 = Ggmin. With these angles and the
parameter po/p, = 5, (*/Rg)™ = 0.103, 6F% = 75°, (a%/Rg)t = 0.171, and
G;Z = A2.59 are found from figure 3. The following egquations may now be
evaluated:

0.L62

Ry 0.259 . 0.462 '
0.103 + 0.034  0.171 + 0.113
y*u .
I =0.100 x 1.890 = 0.189 (&)
Rp
u e}
Rg - 0.159 = 1.46 (5)
0.500 X 0.259
Eé _ 0.087 + 0.65% - 0.189 _ 5 40 ()
I, 0.500 X 0.Lé2 ' -
Ag
=2 = 0.100 + 0.996 - 0.995 = 0.101 (7
B

e, = sin™* (0.189 - 0.087) = 5.9° (2)

1



1h

Tst _ sin (25° - 5.59) - 8
= oo 0.66 (9)
st = sin™* [(1 - 0.050) 0.102] = 5.5° (10)

s*¥0 _ 30° - 25° +5.5° _
14 ) 57.3° X 0.500

0.367 (11a)

*1 o o e}
s 920° - k9,20 _ 5.5

= =5 1.2 llb
To 57.3° X 0.500 3 ( )

The above values define the shock trace in the vertical plane of symmetry
and establish the stagnation-point location and shock standoff distance.
We may now proceed to define the shock trace in the plane containing the
sonic point at location ¢ = 60°. Equation (12) gives

0.866
0.378 - 0.500 X 0.905

® = tan-1 = 95° (12)

The right-hand terms of equations (13) and (14) are evaluated

*U
L. (1 - cos ¢) sin o sin o

Ty _ [0.200 + 0.500 x 0.423] 0.995
sin ® cos B 0.866 cos B
0.472
= 1
e (13)
and
sin € :ig g cos B _ sin €5 cos (o - B)
cos{%in‘l [sin cein 0sin B, o4y € sin (@ - B)]}
sin @
- 0.435 cos B - 0.102 cos (95° - p) (14)

cos{%in‘l {O.h35 sin B + 0.102 sin (95° - B)}}

L

Trial values of 0°, 15°, and 30° for £ are used to make the tabulation



Ordinate Abscissa

B, deg eq. (13) eq. (1k4)
0 0.472 0.446
15 L1489 A2
30 LY 351

and the values are plotted in figure 4 giving the indicated curve which
intersects with the parameter pz/pl 5 at the abscissa coOs 6% = 0.325;

thus eg = 69.2°. From figure 3, 6% = T1.1° and (a*/Rg) = 0.121. The
shock stand-off distance in the ¢ plane at the sonic point is then
evaluated with equation (15)

1l

1

&% _ 0.200 +0.500 X 0.423 _ ¢ 393 (15)
) (0.0k3/0.121) + 1

The shock surface trace in the ¢ plane igs a cirecular arc drawn tangent
to the Y-7 plane at the origin and passing through the point at distance
A*  in the free-stream direction from the corner of the vehicle face at
o = 60°. Along this arc the maximum shock surface inclination is assumed

to vary linearly with arc length from Qé = 71.1° opposite the sonic-point
to 84 F 90° at the origin. The conditions behind the shock trace are
determined from the Rankine-Hugoniot relations for oblique shocks in ideal

air at M = 5.

The pressure, density, and temperature distributions on the body in
the ¢ plane are fixed by g¥ which is determined simultaneously with
cos 9% from figure 4. TFor this numerical example, g¥ = 1.0 and 7 = 1.4,
The appropriate pressure ratios with respect to the stagnation-point values
are selected from figure 5. Corresponding density and temperature ratios

are corputed from p/pst = (P/Pst)l/7 and T/Tgs = (P/Pst)(y_l)/7.
The values of pressure, density, and temperature are now known on the

shock and vehicle traces in the ¢ plane. The conditions in the shock
layer between these bounds are estimated by linear interpolation.



APPENDIX B

BODY STREAMLINE CURVATURE

When the vehicle is at angle of attack, the streamlines on the capsule
face will curve because of nonaxisymmetric pressure distribution. An
analysis of this curve is made utilizing the well-known relationship

== = B1)
R pv2

where 1/R 1is the stream curvature in a plane tangent to the vehicle face
and n is a coordinate normal to the stresmline in the same plane.

Evaluation of the pressure gradient in equation (B1) proceeds as
follows: The body pressure as determined in previous analysis is a

function of the variables s/s* and g*. The pressure function is found by
combining equations (19) and (20)

——-l _'7:-1 \—l- N3
P ._E_\ = <;il\7_l FAE R S <}Ei> ’ <5P WV _3-4g*s La* -1 /s
Pst,/ 2 7 - 1 Pot Pot,/ T T T \FF)

The total derivative on the pressure function WP with respect to n is

dP _ _oP d4(s/s¥) +5Pd_qi
dn  3(s/s*) dn dg* dn

N | CLIED <;1\2 & dex 1) s Y <;L\J 4t (p2)
T2 > s*/ | %2 dn 2 {[\g*/ s¥/] dn

[

where gigéiil = g; %ﬁ - EEE %E; and %i = 0 (orthogonal coordinates).
In order to determine the derivative of g%, its dependence on the flow
path parameters must be known. It can be found, by differentiating
equation (19) with respect to s/s*, that the stagnation-point mass-flow
derivative qgt given when s/s* =0 is (3-q*)/2. It can also be deter—
mined from reference L4 that

a5t = (pyV,/e2V¥) (1 + 26/Ry) (o, /0, ) (£/2) (5%/0)

All terms in the foregoing expression are constant except in the case of
angle of attack, the distances (s*) to the sonic points vary. Therefore,
gt = cs8*, sc g¥ = 3-2cs¥. The derivative
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dg*/dn = (dg*/ds*)(ds*/dn) = -(2qc+/s*)(ds*/an)

dg*/an = [(g* - 3)/s*](ds*/dn)

Tt remains to determine the derivative ds*/dn required in (B2). The
relationship of the differentials ds* and dn 1s shown in figure 10.

Two differentially displaced streamlines are depicted between which the
pressure gradient 1s sought. The streamlines are ascumed to diverge
linearly with distance from the stagnation point. Due to this divergence
the differentials dn = sryy d?¢ cos /5% and ds* = -r, A0 sin £ are
obtained giving the derivative ds*ﬁdn = -g¥tan g/s. Substituting these
in equation (B2) gives the simple result

p) o\
df= q* <_u_ | tan g (BS)

dn s*/” )

. . . / “ .
The pressure function derivative dIF/dn 1in terms of the required pressure
. . / .
derivative dP/dn 1s

1 B /—;
<7+1\7—1/7+1 = 17 =1 (P N7
ap_\2/ i Y (P NSV | FERE Y ap
dn 4 WPt/ Pot/ p Lo} Pgy dn
I S
Pst
L - (BL)

The value of the pressure derivative is put in equation (Bl) resulting in

\3
s 4y tan §
2 Py <;—- —— g*
e . A (B5)
R ;-1 (P \’—;—l—
PRV, N 2 \Pgt/
* -

(1) L <P N

Pet)

When the pressure ratio is replaced by the computationally more convenlent
temperature ratio, the following expression results

v -1 T *<¥1\& tan £
a¥* / S )
4 (BH)

= 2 Tst
f<3 - q*j <S] (s \21( y 41 T
G- e Ty

ool N o
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Graphical constructions of flow paths for various values of g* were
made by use of equation (B6) with 7 = 1.k. The angles Bgy and B* with
respect to the direction

sin ¢

P = tan™d (h/rb) - (1 - cos @)

(BT)

where

!

h/rb =1 - sin(a - €g1)/sin €

were determined graphically from these constructions and are shown as
functions of @' - ¢ for various values of g* in figure 11. With the
angles B determined, the flow path can be closely approximated by a
curve of uniformly inecreasing curvature drawn tangent to the flow direc-
tions Bgt and B¥ as indicated in the lower portion of figure 10. It is
felt that the effect of 7y on the flow direction angles is not large and
figure il may be used to approximate flow paths for gases of , different
from 1.4.

For the numerical example considered in appendix A, )
(o' - @) =100.8° - 60° = 40.8° and g* = 1.0. With these values, B* = 15°
and Bgy = 6° are determined from figure 11.
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Figure 1.-

A-29201

Shock wave due to blunt vehicle at angle of attack.
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(a) Angular dimensions.

Sonic line

¥u
Y —

(b) Linear dimensions.

Figure 2.- Shock and vehicle geometry.
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\ in appendix A 4
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sin ¢
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sin ¢

Figure 4.- Chart for shock solution in ¢ plane.
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¢ *15.5° $=74.5°

a =9.2° a:= 9.2°
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Figure 6.- Shock traces in various ¢ planes; p—‘? =5.15, € = 30°.
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Figure 7.- Density and temperature in shock layer of sphere.
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Figure 9.- Experimental and predicted stream patterns and stagnation-point
locations, M = 3.3 in air.



31

Example construction of flow curve
B, = 6° B*=15°

Figure 10.- Stream geometry on capsule face.
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Figure 11.- Stream angles









